Un texte, une aventure mathématique – “Sophie Germain et l’histoire secrète du dernier Théorème de Fermat” par Emmanuel Peyre
18 février, 2026 @ 18h30 – 20h00
Qu’est ce que le cycle « Un texte, une aventure mathématique » ?
Les conférences du cycle « Un texte, une aventure mathématique » mettent en lumière les recherches mathématiques actuelles en les replaçant dans leur contexte historique. Ces conférences sont gratuites et destinées aux classes de première et terminale ainsi qu’au grand public. La participation des élèves se fait sur inscription :
- Collective, par les enseignants pour leurs classes (location de car possible) ;
- Individuelle, pour les élèves inscrits à titre personnel.
Il est également possible de rencontrer un chercheur ou une chercheuse en mathématiques pour échanger sur son parcours et son sujet de recherche. Enfin, une visite guidée du site François-Mitterrand (1h30) peut être réservée à 16h30 avant la conférence, prévue à 18h au Grand auditorium.
Ce cycle est co-organisé par la Société Mathématique de France et par la Bibliothèque nationale de France.
Résumé de la conférence
Mathématicienne et physicienne autodidacte, Sophie Germain (1776-1831) est une des toutes premières à prouver des résultats significatifs dans le sens du dernier théorème de Fermat.
Inspiré par un exercice de mathématiques remontant à l’antiquité, ce dernier, décédé en 1665, écrit dans la marge d’un livre de sa bibliothèque l’énoncé suivant, publié après sa mort :
« /Si p est un entier supérieur ou égal à trois, alors la puissance p-ème d’un entier strictement positif ne peut s’écrire comme somme de deux autres puissances p-èmes./ »
Jusqu’au début du XIXe siècle, la preuve de cet énoncé n’est connue que si p est un nombre divisible par 3 ou 4. Les travaux de Sophie Germain sur le sujet ne seront pas publiés de son vivant et sa contribution ne sera révélée que progressivement. Ses échanges de lettres avec Carl Friedrich Gauss et sa collaboration avec Adrien-Marie Legendre participent néanmoins à la naissance de la théorie des nombres, dont un des succès les plus retentissants est sans doute la preuve complétée par Andrew Wiles en 1994 de l’énoncé de Fermat !
